A Journal of the Bangladesh Pharmacological Society (BDPS); www.bdps.info

Journal homepage: www.banglajol.info

Abstracted/indexed in Academic Search Complete, Agroforestry Abstracts, Asia Journals Online, Bangladesh Journals Online, Biological Abstracts, BIOSIS Previews, CAB Abstracts, Current Abstracts, Directory of Open Access Journals, EMBASE/Excerpta Medica, Google Scholar, HINARI (WHO), International Pharmaceutical Abstracts, Open J-gate, Science Citation Index Expanded, SCOPUS and Social Sciences Citation Index ISSN: 1991-0088; DOI: 10.3329/bjp.v9i4.20648

Medicinal plants in the protection and treatment of liver diseases

Mohammad Saleem and Faiza Naseer

College of Pharmacy, G.C University Faisalabad, Faisalabad, Pakistan.

Article Info

Received: 1 October 2014 Accepted: 16 October 2014 Available Online: 19 October 2014

Keywords:

Hepatotoxicity
Herbs
Paracetamol
Number of Figures: 5
Number of Tables: 2
Number of Refs: 123
Correspondence: MS

e-mail: saleem2978@hotmail.com

Carbon tetrachloride

Abstract

Hepatic dysfunction is globally a major health catastrophe that challenges the health care professionals. The existing synthetic drugs to treat liver diseases have not given much pronounced outcomes. So, conventional herbal plants have become progressively more popular and their utilization is more prevalent. The current review is assemblage of few promising medicinal plants used in the protection and treatment of various liver diseases. Extracts of plants ground significant alteration in liver marker enzymes against diverse hepatotoxic agents.

Introduction

The liver plays vital role in maintenance, performance, regulation of homeostasis, secretions of bile, storage of vitamins (Ahsan et al., 2009) and detoxification in the body. It participates in all the biochemical pathways to growth, immune system, nutrient supply, energy provision and reproduction (Ward and Daly, 1999). So, the proper functioning of liver is essential for the healthy living of an individual. Hepatic diseases escort to liver damage. A major contributory factor is the enlarge alcohol utilization in developed countries (Nadeem et al., 1997). Starvation, blood deficiency, communicable diseases and accessibility of over-thecounter hepatotoxic drugs are the most recurrent factors of liver cell injures in developing countries (WHO Bulletin, 1992). Hepatic cell injury caused by various toxicants like chemotherapeutic agents, anti tuberculosis drugs, carbon tetrachloride, paracetamol, chronic alcohol consumption and pathogenic microbes are well reported (Priya et al., 2010). Drugs such as paracetamol, carbon tetrachloride, thioacetamide and isoniazid catabolize the radicals, bring on lipid peroxidation, damage the membranes of liver cells and organelles, cause the inflammation and necrosis of hepatocytes and leads to the liberation of cytosolic enzymes into the systemic transmission (Singh et al., 1998).

The most common disease of the liver is jaundice can be presented as yellow coloration of eye sclera, skin and mucous membrane due to increase amount of bilirubin in body, having prehepatic, hepatic or post-hepatic causes (Tortora and Grabowski, 2002). Enlargement of liver (hepatomegaly) can occur due to increased accumulation of blood in liver, inflammation, pathogenic infection, cysts and increased size of hepatocytes, infiltrative disorders or microhepatic causes. Increased ammonia level in brain causes hepatic encephalopathy. When normal hepatic parenchyma is replaced by fibrosis or regenerative nodules, cirrhosis is formed. This may occur due to alcoholism or viral hepatitis. Carcinoma or bile stone sclerosing cholangitis can cause obstructive jaundice and bile duct obstruction can cause secondary biliary cirrhosis. They may be metabolic disorders include hereditary hyperbolic rubinemias and intermediate metabolism of liver, carbohydrates, proteins and heavy metals. Congenital metabolic disorders include: congenital hyperbilirubinemia, Gilbert syndromes, Rotor syndrome, Dubin-jhonson syndrome and

Table I: Classification of hepatotoxins and mechanism of action										
Category of agent	Mechanism (UNOS)	Histological lesion	Examples (Avijeet et al., 2008)							
Intrinsic toxicity Direct Indirect	Membrane injury Interference with specific metabolic pathways leads to structural injury	Necrosis and /or stenosis Necrosis and or stenosis	CCl ₄ , CHCl ₃ Thioacetamide, paracetamol, ethanol, tetracycline							
Host idiosyncrasy Hypersensitivity	Drug allergy	Necrosis or cholestetosis	Sulphonamides, iproniazid, halothane, paraaminosalicylate, isoniazid, pyrazinamide, rifampicin							

alpha 1 antitrypsin deficiency. Aquired metabolic disorder may be due to food, beverages, toxins, drugs or alcohol. Hepatomegaly, alcoholic hepatitis and cirrhosis are the reasons of excessive alcohol intake (Dalia and Nagalakshrni, 2000).

All forms of liver injuries (microbiologic, toxic, circulatory or traumatic injury) lead to liver necrosis. Necrosis could be diffuse, zonal or focal (**Table I**). Other liver diseases include followings:

- Anemia, hemolytic anemia can cause decrease oxygen availability to liver cells and lead to their death.
- Infection: bacteria, viruses and fungi can cause liver problem.
 - Infectious disease includes canine hepatitis, canine herpes virus, feline infectious peritonitis, leptospirosis, abscesses histoplasmosis, histoplasmosis, coccidiomycosis and toxoplasmosis. HAV, HBV, HCV, HDV, HEV hepatotroipc viruses that cause acute attacks.
 - 2. Hepatitis A virus can cause acute, self-limited disease that is transmitted orally.
 - 3. Hepatitis B and C viruses are transmitted by exchange of body fluids such as blood transfusion and sexual contacts.
 - 4. Hepatitis D is a viroid that causes inflammation along with HBV.
 - 5. Hepatitis E is transmitted by enteric route and cause self-limited disease.
 - 6. HBV-HDV cause chronic hepatitis. Methyldopa, nitrofurantoin, ketoconazole and paracetamol cause drug-induced hepatitis.

Medicinal herbal formulations belong to the conventional systems of medication have been considered as liver protective agents from so long. All following plants have momentous hepatoprotective potential all along with other activities.

Lepidium sativum belongs to family Brassicaceae, is commonly known as garden grass and also has hepatoprotective potential against carbon tetrachloride (Figure 1). Figure 2 has presented Vaccinium procya-

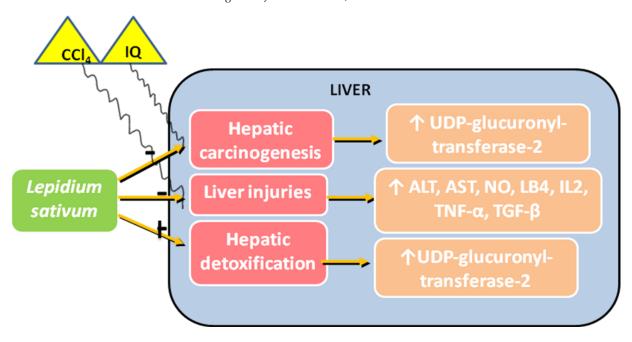
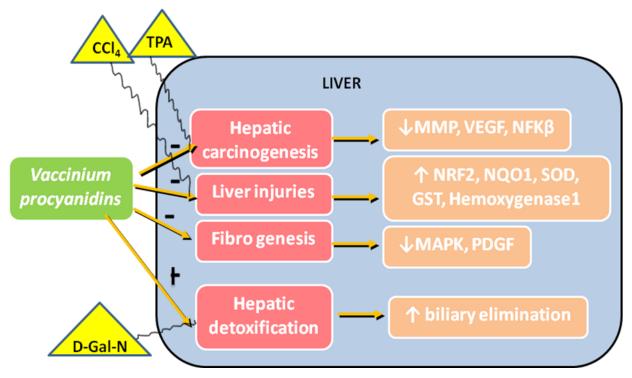
nidins, its hepatoprotective action against two hepatotoxins tetradecanoylphorbol acetate, carbon tetrachloride and D-galactosamine. **Figure 3** has presented the one medicinal plant (*Ficus carica*: family Umbelliferaceae) with mechanism of action as hepatoprotective agent (Poumale et al., 2008).

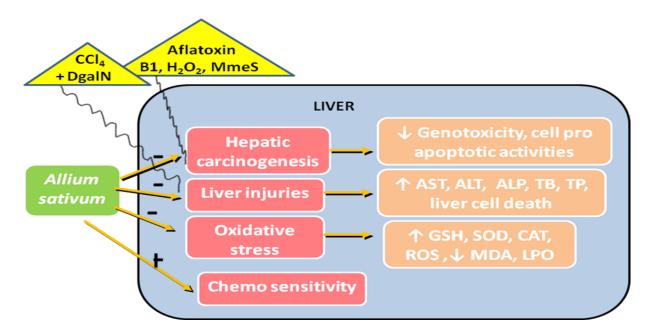
Various edible herbs also approved because of their activities in protection and treatment of liver diseases. They have shown their hepatoprotective action by various means. For example: fruit of Allium sativum belongs to family Liliaceae, is used most commonly in Indian Subcontinent foods and recognizes by the name of "Garlic: Lehsan". It has hepatoprotective potential due to its organosulphur components which is clearly depicted by Figure 4. Like this, roots of Glycyrrhiza glabra belongs to family Fabaceae, commonly known as "Malathi" has proved hepatoprotective action due to glycyrrhetinic acid and liqourice as major chemical constituents against hepatotoxins carbon tetrachloride and D-galactosamine N and viral and non viral heaptitis by controlling oxidative stress and hepatic phase I and phase II metabolism shown in Figure 5.

Thus the objective of the current review is intended to sum up the maximum medicinal plants those have been using and proved for the protection and treatment of liver **Table II**.

Alteration in liver markers: The consequences of hepatoprotective activity of extract of medicinal plants are considerable decline in liver marker enzymes: Total bilirubin (TB), direct bilirubin (DB), alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), lipid profile, lactate dehydrogenase (LDH), gamma-glutamyltransferase (γ-GT), thiobarbituric acid reactive substances (TBARS) and markers for oxidative defense namely malondialdehyde (MDA), accompanied by significant enhance in the level of total protein (TP), glutathione (GSH), total thiols (TT), conjugated dienes (CD), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione-S -transferase (GST) and glutathione peroxidase (GSH-Px) in treatment group as compared to the hepatotoxic group and these also estored the depleted liver thiol levels significantly.

Analysis of **Table II** indicates that there are compiled 112 Asian herbs which have been reported for their


Figure 1: Lepidium sativum juice and powder has hepatoprotective activity against carbon tetrachloride (CCl₄) and 2-amino-3-methylimidazole-4, 5-quinoline (IQ). These hepatotoxins disturb the liver regular mechanisms. Plant juice inhibits the hepatocarcinogenesis via increasing the UDP-glucuronyl-transferase-2 and carcinogen detoxification, inhibits the liver injury via inhibiting the AST, ALT, nitric oxide (NO), leukotriene B4, interleukin 2 (IL-2), tumor necrosis factor α (TNF- α) and transforming growth factor β (TGF- β) and increases the hepatic detoxification via up regulating the glucuronyltransferase-2 (Afaf et al., 2008)

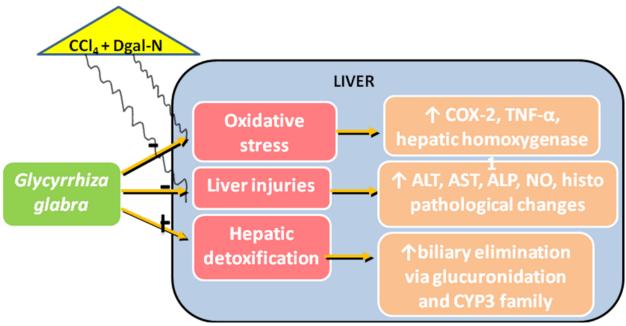

Figure 2: *Vaccinium procyanidins* inhibits the liver injury via increasing the nuclear factor 2 (NRF-2), NADPH dehydrogenase quinine 1 (NQO1), superoxide dismutase (SOD), glutathione-S-transferase (GST) and hemoxygenase 1, viral hepatitis, fibrogenesis via inhibiting the mitogen activated protein kinase pathways (MAPK) and platelet derived growth factor (PDGF), hepatocarcinogenesis via inhibiting matrix metalloproteinase (MMP), vascular endothelial growth factor (VEGF), nuclear factor kappa light chain enhancer of B cells (NF-KB), increases the hepatic detoxification and biliary elimination against hepatotoxins like carbon tetrachloride (CCl₄) and D-galactosamine N (Gressner et al., 2012)

Figure 3: Ficus carica prevents the liver cell death and LDH leakage by increasing AST, ALT, ALP, TB and MDA levels and decreasing oxidative stress parameters (GSH, SOD, CAT), those were perturbed by CCl₄ and Rifampicin hepatotoxins (Poumale et al., 2008)

Figure 4: *Allium sativum* (Family Liliaceae) has shown hepatoprotective potential due to its organosulphur components including: allicin, diallyl sulphide, diallyl disulphide, S-allyl cysteine and allyl marcaptan. These constituents inhibits the hepatocarcinogenesis via inhibiting the genotoxicity, cell proapoptotic activities and increasing the chemosensitivity against carcinogens, aflatoxin B1, H₂O₂, methyl methanesulfonate (MmeS), bezno-a-pyrene and dimethylnitrosamine. Allicin inhibits the steatosis via inhibiting total serum cholesterol. Its oil and allicin has negative potential against hepatotoxins like CCl₄, D-gal-N, Ethanol and heavy metals via inhibiting the AST, ALT, ALP, MDA and ROS and increasing the GSH, SOD, CAT and GPx levels in intrahepatic tissues (Ilyas et al., 2011)

Figure 5: *Glycyrrhiza glabra* (Family: Fabaceae) has hepatoprotective action due to glycyrrhetinic acid and liqourice by inhibiting the liver injuries and inflammation via controlling the oxidative stress parameters and increasing the hepatic detoxification via increasing the cytochrom phase I and glucuronidation phase II metabolism which become affected by hepatotoxins carbon tetrachloride and D-galactosamine N (Al-Razzuq et al., 2012)

hepatoprotective activity against hepatotoxins. Among these 35 plants have proved their hepatoprotective activity against paracetamol, in which 17 studies were conducted on rats, 15 on mice and 3 on rabbits. 53 botanical herbs have shown their potential for protection and treatment of liver against carbon tetrachloride (inorganic substance), in which rat has been used as biological animal in 45, mice in 5 and rabbit in 3 studies. Anti-tuberculosis drugs (isoniazid, rifampicin, pyrazinamide etc) also act as hepatotoxin. In Table II, 7 plants have proved their activity against them and all studies were conducted on rats. Thioacetamide, an organosulphur compound has ability to destroy the hepatocyte. Five plants were reported against this hepatotoxin, in which 4 studies were conducted on rats and 1 on mice. Other hepatotoxins which become the reason of high magnitude of liver marker enzymes include D-galactosamine/ lipopolysaccharide (3 studies conducted: 2 on rat and 1 on mice), ethanol (3 plants studies on rats), γ-hexachlorocyclohexane by Aloe vera on mice, di-methylnitrosamine on rat, alloxan on rabbit, n-heptane on rat, bile duct ligation on rat and tacrine (centrally acting anticholinesterase) on human liver-derived Hep G2 cells. Among all listed plants, for only few acute toxicity studies were conducted. For example, Aloe barbadensis did not show any sign of toxicity up to oral dose of 2 g/ kg in mice (Chandan et al., 2007) and Euphorbia fusiformis ethanol extract single dose LD50 was found to be 10,000 mg/kg body weight when administered orally in mice (Anusuya et al., 2010).

Botanical herbs have been used for protection and treatment of liver diseases due to the presence of chemical constituents. For example, polyphenolic compounds have an important role in stabilizing lipid oxidation and are associated with antioxidant activity. Phenyl propanoids include phenolic compounds; those have shown remarkable effects on carbon tetrachloride-induced toxic indications in rats while eugenol and acetyleugenol from Syzygium aromaticum (Myrtaceae) exhibit cholagogue activity in biological models which increase the contractile activity and promote the discharge of bile from the liver and the gall bladder. Coumarin derivatives like 7-hydroxy, 7-s- hydroxy, 4-hydroxy, 4,7dihydroxy and 4,7-dimethyl-5-hydroxy coumarin, coumarin-3-carboxylic acid and dicoumarol has ability to stimulate choleresis in rats (Vonk et al., 1978). Family Compositae (Artemisia abrotanum, Cichorium intybus) produce poly phenolic compounds and all those chemical compounds which have hydroxyl group at C-7 are become able to exerting a strong choleretic action (Dey et al., 2013). Silymarin is a most potent hepatoprotective compound and a mixture of isomeric flavolignans- silybin, silydianin and silychristen. It produces its defensive mechanism by competitively blocking the binding of phalloidin to receptors on the membrane of liver cell and obstructing the α-amanitin to infiltrate through the membrane into the cell nucleus (Valan et al., 2013). Essential oil also has shown its protective potential on liver histology, liver metabolic and serum profile. Myrtaceae, Umbelliferae, Labiatae and Rosaceae families increase the bile secretion and organic

SL. No.	Botanical plant	Parts used	Extract	Hepatotoxic	In vivo models	Remarks about liver marker enzymes	References
NO.	(Family)	usea		agent	models	marker enzymes	
1	Abutilon bidentatum (Malvaceae)	Leaves, Flowers	Aqueous methanol	PCT and CCl ₄	Rabbit	↓ SGPT, SGOT, ALKP and DB	Yasmin et al., 2011
2	Aegle marmelos (Rutaceae)	Leaves	Ethanol	CCl ₄	Mice	↓ SGPT, SGOT, ALP and DB	Sumitha and Thirunalasun dari 2011
3	Aerva lanata (Amaranthaceae)	Leaves	Hydro- alcoholic	PCT	Rat	↓ levels of AST, ALP, DB and serum TB	Vertichelvan al., 2000
4	Allium sativum (Liliaceae)	Fruit	No extract	INH	Rat	↓ AST, ALP, SGPT, SGOT and DB	Ilyas et al., 2011
5	Alcea rosea (Malvaceae)	Aerial parts	Aqueous methanol	PCT	Mice	↓ levels of AST, ALP, DB and serum TB	Hussain et al 2014
6	Aloe barbadensis (Liliaceae)	Aerial parts	Chloroform, ether and petroleum	CCl ₄	Mice	↓ AST, ALP and ALT levels. Restored depleted liver thiols	Chandan et a 2007
7	Aloe vera (Liliaceae)	Leaves	Aqueous	gamma- hexachlorocy clohexane (Lindane)	Mice	AST, ALP and ALT levels. Restored depleted liver thiols	Etim et al., 2006
8	Amaranthus caudatus (Amaranthaceae)	Whole plant	Methanolic extract	PCT	Rat	↓ ALT, AST, DB, TB and MDA level. ↑ ALB, GSH, TT, TP and CT levels	Kumar et al., 2011
9	Amaranthus spinosus (Amaranthaceae)	Whole plant	Ethanol	CCl ₄	Rat	↓ ALT, AST, DB, TB and MDA level. ↑ ALB, GSH, TT, TP and CT levels	Zeashan et al 2008
10	Annona squamosa (Annonaceae)	Leaves	Aqueous ethanol	INH	Rat	↓ TB, ALP, AST, ALT and γ-GT and ↑ TP level	Kaleem et al. 2006
11	Arachniodes exilis (Dryopteridaceae)	Rhizome	Ethanol	CCl ₄	Mice	↓ AST, ALT, ALP and CHL. ↑ antioxidant enzyme activities of SOD, CAT, MDA and GSH	Zhou et al., 2010
12	Asparagus racemosus (Liliaceae)	Whole plant	Crude aqueous	PCT	Rat	↑ LPO, ↓ GSH and SOD	Om et al., 20
13	Baliospermum montanum (Euphorbiaceae)	Leaves	Alcohol, Chloroform	Thioace- tamide	Mice	↓ in SGOT , SGPT and CHL level	Kumar and Mishra, 2012
14	Berberis lyceum (Berberidaceae)	Bark	Alcohol	CCl ₄	Rat	↓ TB, ALP, AST, and ALT levels	Khan et al., 2011
15	Bixa orellana (Bixaceae)	Seed	Methanol	CCl ₄	Rat	↓ in SGOT , SGPT and cholesterol level	Ahsan et al., 2009
16	Boerhaavia diffusa (Nyctaginaceae)	Roots	Aqueous	Thioace- tamide	Rat	↓ TB, ALP, AST, and ALT and ↑ TP	Rawat et al., 1997
17	Bombax ceiba (Bixaceae)	Flowers	Methanol	INH, RMP	Rat	↓ TB, ALP, AST, and ALT and ↑TP	Ravi et al., 20
18	Bupleurum kaoi (Umbelliferae)	Roots	Ethanol	Dimethyl nitrosamine	Rat	↓ SGOT , SGPT, ALP, AST and ALT	Yen et al., 20

SL. No.	Botanical plant (Family)	Parts used	Extract	Hepatotox ic agent	In vivo models	Remarks about liver marker enzymes	References
19	Butea monosperma (Fabaceae)	Flowers	Aqueous	PCT	Rabbit	↓ ALP, AST and ALT	Maaz et al., 2010
20	Cajanus cajan (Fabaceae)	Whole plant	Methanol	CCl ₄	Rat	↓ SGOT , SGPT and CHL level	Sing et al., 201
21	Calotropis procera (Apocynaceae)	Flower	Aqueous alcohol	PCT	Rat		Setty et al., 2007
22	Carica papaya (Caricaceae)	Fruit	Aqueous ethanol	CCl ₄	Rat	↓ SGOT , SGPT, ALP, AST, ALT and LDH levels	Sadeque and Begum, 2010
23	Carissa opaca (Apocynaceae)	Leaves	Methanol	CCl ₄	Rat	↓ lipid peroxidation (TBARS), AST, ALT, ALP, LDH and γGT levels	Sahreen et al., 2011
24	Carissa spinarum (Apocynaceae)	Roots	Ethanol	PCT and CCl ₄	Rat	↓ SGOT , SGPT, ALP, AST, ALT and LDH levels	Hegde and Joshi, 2010
25	Cassia fistula (Leguminaceae)	Leaves	Ethanol	N-heptane	Rat	↓ ALP, AST, ALT, LDH and γ-GT	Bhakta et al., 2001
26	Cassia occidentalis (Caesalpiniaceae)	Leaves	Aqueous ethanol	PCT	Rat	↓ SGOT , SGPT, ALP, AST, ALT and LDH levels	Rani et al., 201
27	Casuarina equisetifolia (Casuarinaceae)	Leaves and Bark	Methanol	CCl ₄	Rat	↓ SGOT , SGPT and cholesterol level	Ahsan et al., 2009
28	Cestrum nocturnum (Solanaceae)	Leaves	Aqueous ethanol	PCT	Mice	↓ SGOT , SGPT, ALP, AST, ALT and LDH levels	Qadir et al., 2014
29	Chamomile recutita (Asteraceae)	Flower	Methanol	CCl ₄	Rat	↑ Conc. of glutathione in Liver & blood and Na+K+ATPase activity. ↓ ALT, AST, ALP, TB and liver glycogen levels	Gupta et al., 2006
30	Chenopodium murale (Chenopodiaceae)	Whole plant	Aqueous methanol	PCT	Mice	↓ ALP, AST, ALT and TB levels	Saleem et al., 2014
31	Cinnamomum tamala (Lauraceae)	Leaves	Methanol	PCT	Mice	↓ SGOT, SGPT, ALP, lipid profile, TB and ↑ TP	Selvam et al., 2010
32	Clerodendron inerme (Verbenaceae)	Leaves	Ethanol	PCT	Rat	↓ SGOT, SGPT, SALP, TB and ↑ TP levels	Haque et al., 2011
33	Coccinia grandis (Curcubitaceae)	Leaves	Aqueous, Ethanol	CCl ₄	Rat	↓ SGOT, SGPT, ALP, TB and CHL levels	Sunilson et al. 2009
34	Cocculus hirsutus (Menispermaceae)	Aerial parts	Methanol	Bile duct ligation	Rat	↓ ALT, AST, LDLC, HDL TC and STG. ↑ antioxidant enzyme activities of SOD, CAT, GSH-Px and GST	Thakare et al., 2009
35	Cochlospermum planchoni (Coclospermaceae)	Rhizome	Aqueous	CCl ₄	Rat	↓ ALP, AST and TB levels	Nafiu et al., 2011
36	Convolvulus arvensis (Convolvulaceae)	Whole plant	Ethanol	PCT	Mice	↓ ALP, AST, ALP and TB levels	Ali et al., 2013

SL. No.	Botanical plant (Family)	Parts used	Extract	Hepatotoxic agent	In vivo models	Remarks about liver marker enzymes	References
37	Cordia macleodii (Boraginaceae)	Leaves	Ethanol	CCl ₄	Rat	↓ SGPT, SGOT, ALP and TB levels	Qureshi et al., 2009
38	Cuscuta chinensis (Convolvulaceae)	Seeds	Aqueous ethanol	PCT	Rat	↑ antioxidant enzyme activities of SOD, CAT, GSH-Px, GST and GSH	Yen et al., 2007
39	Cyathea gigantea (Cyatheaceae)	Leaves	Methanol	PCT	Rat	↓ SGPT, SGOT, ALP,TB, TP and reverse the hepatic damage	Kiran et al., 2012
40	Decalepis hamiltonii (Asclepiadaceae)	Roots	Aqueous	Ethanol	Rat	↓ ALT, AST, LDLC, HDL TC and STG. ↑ SOD, CAT, GSH-Px, GST, and GSH	Srivastava and Shivanand appa, 2006
41	Dodonaea viscose (Sapindaceae)	Leaves	Methanol	Alloxan	Rabbit	↓ ALT, AST, LDLC, HDL TC and STG	Ahmad et al., 2011
42	Eclipta alba (Asteraceae)	Whole plant	Ethanol	PCT	Mice	ALT level, fatty degeneration and centrizonal liver necrosis	Tabassum et al., 2004
43	Emblica officinalis (Phyllanthaceae)	Leaves	Ethanol	CCl ₄	Rat	↓ ALT, AST, LDLC, HDL TC and STG	Jose and Kuttan, 2000
44	Equisetum arvense (Equisetaceae)	Aerial parts	Methanol	Tacrine	Hep G2 cells	↓ AST, ALT, TP, TB and ALP levels	Oh et al., 2004
45	Eucalyptus maculata (Myrtaceae)	Leaves	Chloroform	PCT	Rats and Mice	↓ AST, ALT and ALP	Mohamed et al., 2005
46	Euphorbia fusiformis (Euphorbiaceae)	Tubers	Ethanol	RMP	Rat	↓ AST, ALT, ALP, SGPT and SGOT	Anusuya et al. 2010
47	Feronia elephantum (Rutaceae)	Fruit	Aqueous	CCl ₄	Rat	↓ ALT, AST, billirubin level and ↑ TP levels	Kamat et al., 2003
48	Ficus cordata (Moraceae)	Roots	Methanol/ ethylacetate	CCl ₄	Rat	Prevent liver cell death and LDH leakage	Donfack et al., 2011
49	Foeniculum vulgare (Apiaceae)	Leaves and fruit	Ethanol	CCl ₄	Rat	↓ AST, ALT, ALP, SGPT and SGOT	Ozbek et al., 2003
50	Galium aparine (Rubiaceae)	whole plant	Alcohol	CCl ₄	Rat	↓ALP, AST, and ALT levels	Khan et al., 2011
51	Glycosmis pentaphylla (Rutaceae)	Leaves and bark	Methanol	PCT	Mice	↓ in SGOT , SGPT and cholesterol level	Nayak et al., 2011
52	Glycyrrhiza glabra (Fabaceae)	Roots	Aqueous	CCl ₄	Rabbit	↑ antioxidant enzyme activities of SOD, CAT, GSH-Px, GST and GSH	Al-Razzuqi et al., 2012
53	Gundelia tourenfortii (Asteraceae)	Stalk	Hydro alcoholic	CCl ₄	Rat	↓ALP, AST, TB and ALT levels	Jamshidzadeh et al., 2005
54	Halenia elliptica (Gentianaceae)	Whole plant	Methanol	CCl ₄	Rat	↓ SGOT, SGPT, ALP, AST and TB levels	Huang et al., 2010

SL.	Botanical plant	Parts	Extract	Hepatotoxi	In vivo	Remarks about liver	References
No.	(Family)	used		c agent	models	marker enzymes	
55	Haloxylon salicornicum (Chenopodiaceae)	Aerial parts	Ethanol	CCl ₄	Rabbit	↓ SGOT, SGPT, ALP and TB levels	Ahmad and Erum, 2011
56	Hemidesmus indicus (Apocynaceae)	Roots	Methanol	INH and RMP	Rat	↓ ALP, AST, TB and ALT	Prabhakaran and Rangasamy, 2000
57	Hygrophila auriculata (Acanthaceae)	Roots	Aqueous	CCl ₄	Rat	↓ AST , ALT, ALP, TB and CHL levels	Dhanaraj et a 2012
58	Hypericum japonicum (Clusiaceae)	Whole plants	Aqueous	CCl ₄	Mice	↓ SGPT, SGOT, AST , ALT and ALP levels	Wang et al., 2008
59	Hyptis suaveolens (Lamiaceae)	Leaves	Aqueous	PCT	Rabbit	↓ TP and TB levels	Babalola et a 2011
60	Ipomoea staphylina (Convolvulaceae)	Levaes	Hydro- alcohol	CCl ₄	Rat	↓ALP, AST, ALT, SGPT, SGOT and CHL levels	Bag and Mumtaz, 201
61	Kohautia grandiflora (Rubiaceae)	Leaves	Aqueous	PCT	Rat	↓ AST , ALT, ALP, TB and TP	Garba et al., 2009
62	Laggera pterodonta (Asteraceae)	Whole plant	Ethyl alcohol	CCl ₄	Rat	↓ AST , ALT, ALP, TB and TP	Wu et al., 20
63	Launaea procumbens (Asteraceae)	Whole plant	Methanol	CCl ₄	Rat	↓ ALT, AST, ALP, LDH, LDL, HDL, TC and Triglycerides levels	Khan et al., 2012
64	Lepidium sativum (Brassicaceae)	Whole plant	Methanol	CCl ₄	Rat	↓ AST , ALT, ALP, TB and TP	Afaf et al., 20
65	Luffa echinata (Cucurbitaceae)	Fruit	Petroleum, acetone and methanol	CCl ₄	Rat	↓ SGOT, SGPT, ALP and AST levels	Ahmed et al 2001
66	Malva parviflora (Malvaceae)	Whole plant	Methanol	PCT	Mice	↓ ALP, AST, TP and ALT	Mallhi et al., 2014
67	Momordica dioica (Cucurbitaceae)	Leaves	Aqueous methanol	CCl ₄	Rat	↓ ALP, AST, TP and ALT	Jain et al., 20
68	Mimosa Pudica (Mimosaceae)	Leaves	Methanol	CCl ₄	Rat	↓ AST , ALT, ALP, TB and TP. ↓ SGOT, SGPT	Rajendran et al., 2009
69	Moringa oleifera (Moringaceae)	Roots, flowers	Methanol	INH, RMP, PZA	Rat	↑ Antioxidant enzyme activities of SOD, CAT, GSH-Px, GST and GSH. ↓ AST, ALT, ALP, TB and TP. ↓ SGOT, SGPT	Pari and Kumar, 2002
70	Nigella sativa (Ranunculaceae)	Seeds	Alcohol	Galactosa- mine/ lipo- polysacchar ide	Rat	↓ALP, AST, TB, TP and ALT	Gani and Jol 2013
71	Ocimum gratissium (Lamiaceae)	Fresh leaves	Methanol	CCl ₄	Rat	↓ ALT, AST and ALP levels	Friday et al., 2012
72	Ocimum sanctum (Lamiaceae)	Leaves	Alcohol	PCT	Rat	↓ SGPT, SGOT, ALT, AST and ALP	Lahon et al., 2011

Table	II: Reported medicina	al plants hav	ing hepatopro	tective potentia	d (Cont.)		
SL. No.	Botanical plant (Family)	Parts used	Extract	Hepatotoxi c agent	In vivo models	Remarks about liver marker enzymes	References
73	Orthosiphon stamineous (Lamiaceae)	Leaves	Methanol	PCT	Rat	↓SGPT, SGOT, LPO, ALT, AST and ALP	Maheswari et al., 2008
74	Parkinsonia aculeata (Fabaceae)	Leaves	Ethanol	PCT	Rat	↓ SGOT, SGPT, LDH, ALP, TB and ↑ TP levels	Shah and Deval, 2011
75	Phoenix dactylifera (Arecaceae)	Fruits	Methanol	Thioaceta- mide	Rat	Ameliorated the increased level of MDA and decline of GSH and amelioration of ALT, ALP and AST	Okwuosaetal, 2014
76	Picrorhiza kurroa (Scrophulariaceae)	Roots rhizomes	Ethanol	CCl ₄	Rat	↓ALP, AST, ALT, SGPT, SGOT and CHL levels	Arsuletal, 2011
77	Piper chaba (Piperaceae)	Fruit	Aqueous acetone	Galactosa- mine/lipo- polysaccha- ride	Mice	↓ALP, AST, ALT, SGPT and SGOT levels	Matsuda et al., 2009
78	Pistacia integerrima (Anacardiaceae)	Bark	Ethyl acetate	PCT	Rat	↓ ALP, AST, and ALT levels	Joshi and Mishra, 2010
79	Plumbago zeylanica (Plumbaginacea)	Aerial parts	Methanol	PCT	Rat	↓ serum TB, SGPT, SGOT and ALP levels	Kanchana and Sadiq, 2011
80	Phyllanthus emblica (Euphorbiaceae)	Fruits	Aqueous	PCT	Rat	Significant ↑ TBC and less necrosis	Malar and Mettilda, 2009
81	Phyllanthus niruri (Euphorbiaceae)	Leaves, fruits	Aqueous methanol	PCT	Mice	↑ Antioxidant enzyme activities of SOD, CAT, GSH-Px, GST and GSH.	Tabassum and Agrawal, 2005
82	Phyllanthus polyphyllus (Euphorbiaceae)	Leaves	Methanol	PCT	Mice	↓ ALP, AST, ALT, SPGT and SGOT levels. ↑ Antioxidant enzyme activities of SOD, CAT, GSH-Px, GST and GSH.	Srirama et al., 2012
83	Physalis minima (Solanaceae)	Whole plant	Methanol	CCl ₄	Rat	↓ SGPT, SGOT, LPO, TP, ALT, AST and ALP	Ahsan et al., 2009
84	Plantago major (Plantaginaceae)	Whole plant	Methanol	CCl ₄	Rat	↓ TB, TP, SGPT, SGOT, AST and ALP levels	Turel et al., 2009
85	Pterospermum acerifolium (Sterculiaceae)	Leaves	Ethanol	CCl ₄	Rat	↓ALP, AST, ALT, SGPT, SGOT and CHL levels	Kharpate et al., 2007
86	Rheum emodi (Polygonaceae)	Roots	Petroleum benzene, chloroform	CCl ₄	Rat	↓ serum TB, TP, SGPT, SGOT, AST and ALP levels	Ibrahim et al., 2008
87	Rosa damascene (Rosaceae)	Fruit	Aqueous methanol	CCl ₄	Rat	↓ SGPT, SGOT, LPO, TP, ALT, AST and ALP levels.	Achuthan et al., 2003
88	Rubia cordifolia (Rubiaceae)	Roots	Methanol	Thioactami de	Rat	↓ ALP, AST, ALT, SPGT and SGOT levels	Babita et al., 2007
89	Rumex dentatus (Polygonaceae)	Whole plant	Aqueous- methanol	PCT	Mice	↓ ALP, AST, TB and ALT levels	Saleem et al., 2014
90	Sarcostemma brevistigma (Asclepiadaceae)	Stem	Ethyl acetate	CCl ₄	Rat	↓ AST, ALT, ALP, TP, SGOT and TB levels and liver necrosis.	Singh and Mehta, 2003

Table	II: Reported medicinal	l plants hav	ving hepatopro	tective potential	(Cont.)		
SL. No.	Botanical plant (Family)	Parts used	Extract	Hepatotoxic agent	In vivo models	Remarks about liver marker enzymes	References
91	Saururus chinensis (Saururaceae)	Whole plant	Ethanol	CCl ₄	Rat	↓ AST, ALT, ALP and CHL. ↑ antioxidant enzyme activities of SOD, CAT, MDA and GSH.	Wang et al., 2009
92	Schouwia thebica (Arecaceae)	Aerial parts	Diethyl ether, chloroform	CCl ₄	Rat	ALT, AST, SGPT, SGOT, levels of glucose, triglycerides and CHL	Awaad et al., 2006
93	Scoparia dulcis (Scrophulariaceae)	Leaves	Ethanol	CCl ₄	Mice	↓ SGPT, SGOT, ALP, AST, TB and ALT levels	Tsai et al., 2010
94	Silybum marianum (Asteraceae)	Whole plant	Ethanol	CCl ₄	Rat	↓ AST, ALT, ALP and CHL. ↑ antioxidant enzyme activities of SOD, CAT, MDA and GSH.	Ramadan et al 2011
95	Spondias pinnata (Anacardiaceae)	Stem wood	Ethyl acetate, methanol	CCl ₄	Rat	↓ SGPT, SGOT, CHL, AST, ALT, ALP, TP and TB levels.	Rao and Raju, 2010
96	Solanum nigram (Solanaceae)	Fruit	Ethanol	CCl ₄	Rat	↓ AST, ALT, ALP, TP and TB levels	Raju et al., 200
97	Stachytarpheta indica (Verbenaceae)	Whole plant	Ethanol	CCl ₄	Rat	↓ SGPT, SGOT, CHL, AST, ALT, ALP, TP and TB levels.	Joshi et al., 2010
98	Suaeda fruticosa (Amaranthaceae)	Leaves	Aqueous methanol	PCT	Rabbit	↓ SGPT, SGOT, AST, ALT, ALP, TP and TB levels.	Rehman et al., 2013
99	Tecomella undula (Bignoniaceae)	Aerial parts	Aqueous ethanol	PCT	Rat	↓ ALP, AST, ALT, SPGT and SGOT levels . ↑ Antioxidant enzyme activities of SOD, CAT, GSH-Px, GST and GSH.	Singh and Gupta, 2011
100	Tephrosia purpurea L (Fabaceae)	Aerial parts	Aqueous ethanol	Thioaceta- mide	Rat	ALP, AST, ALT, SPGT and SGOT levels. Ameliorated the increased level of MDA and decline of GSH and amelioration of ALT, ALP and AST	Khatri et al., 2009
101	Terminalia chebula (Combetraceae)	Fruit	Ethanol	RIF, INH, PZA	Rat	↓ AST, ALT, ALP, TP and TB levels	Tasduq et al., 2006
102	Thunbergia laurifolia (Acanthaceae)	Leaves	Aqueous	Ethanol	Rat	↓ SGOT, SGPT, AST, ALP and TB levels	Pramyothin et al., 2005
103	Thymus linearis (Lamiaceae)	Leaves	Aqueous and ether	PCT and CCl ₄	Mice	↓ SGOT, SGPT, ALT, AST, ALP and TB levels	Alamgeer et a. 2014
104	Trianthema decandra (Aizoaceae)	Leaves	Aqueous	CCl ₄	Rat	↑ GSH, SOD, CAT levels. ↓ SGPT, SGOT, AST, ALT, ALP, TP and TB	Balamurugan and Muthu- samy, 2008
105	Trichodesma sedgwickianum (Boraginaceae)	Leaves	Ethanol	CCl ₄	Rat	↑ GSH, SOD, CAT levels. ↓ AST, ALT, ALP, TP and TB levels.	Saboo et al., 2013
106	Tridax procumbens (Asteraceae)	Aerial parts	Ethanol	Galactosa- mine/ lipopolysa- ccharide	Rat	↑ GSH, SOD, CAT levels. ↓ AST, ALT, ALP, TP and TB levels.	Ravikumar et al., 2005

Table	Table II: Reported medicinal plants having hepatoprotective potential (Cont.)								
SL. No.	Botanical plant (Family)	Parts used	Extract	Hepatotoxic agent	In vivo models	Remarks about liver marker enzymes	References		
107	Tylophora indica (Asclepiadaceae)	Leaf powder	Aqueous alcohol	Ethanol	Rat	↓ AST, ALT, ALP, TP and TB levels	Gujrati et al., 2007		
108	Vernonia amygdalina (Compositae)	Leaves	Aqueous	PCT	Mice	↓ SGOT, SGPT, LDH, ALP, DB and TB, TBAR and iron. ↑ CAT and TP	Iwalokun et al., 2006		
109	Viola odorata (Violaceae)	Leaves	Aqueous methanol	PCT	Mice	↓ SGOT, SGPT, TB, AST, ALP, ↑ CAT, GSH levels	Qadir et al., 2014		
110	Vitex trifolia (Verbenaceae)	Leaves	Aqueous ethanol	CCl ₄	Rat	↓ tissue necrosis, SGPT, SGOT, CHL, AST, ALT, ALP, TP and TB levels	Manjunatha and Vidya, 2008		
111	Vitis vinifera (Vitaceae)	Roots	Ethanol	CCl ₄	Rat	↓ SGOT, SGPT, TB, AST, ALP levels. ↑ CAT and GSH levels	Sharma et al., 2012		
112	Zanthoxylum armatum (Rutaceae)	Bark	Ethanol	CCl ₄	Rat	↓ SGOT, SGPT, TB, AST, ALP, ↑ CAT, GSH levels	Verma et al., 2010		

components to protect the liver by producing essential oils through choleretic activity. Umbelliferae has also ability to regenerate the hepatocytes by decreasing the liver damage and tissue necrosis.

Various diterpenoids, triterpinoids and sesquiterpenoids mostly from Lauraceae, Acanthaceae, Compositae families have active components β -eugenol and hinesol exhibited significant liver protecting effects by decreasing the SGPT and SGOT levels. Curcurbitiacin B, a triterpene compound obtained from Cucurbitaceae family has shown it's inflammatory and choleretic activity in biological models. Active constituents: glycyrrhizin and glycyrrhetic acid from of Glycyrrhiza glabra (Fabaceae) prevent the cirrhosis in rats (Al-Razzuq et al., 2012). Carotenoids include crocin and crocetin isolated from the fruits Rubiaceae family increase the bile secretion when administered into rabbits. Extracts from Scrophulariaceae, Rubiaceae and Plantaginaceae families produce glycosides like picroside I and picroside II, acubin, iridoid and geniposidic acid have shown liver protective effects against liver intoxication by carbon tetrachloride in mice. Saponins like saikosaponin D and saikosamponin A are produced by Leguminosae, Polygonaceae, Caryophyllaceae and Arleaceae families protect the liver in rabbits from hepatotoxin like carbon tetrachloride and inhibit the deposition of lipid peroxides in the liver of rats. Catechin, quercetin, kaempferol, narringenin, isohelichrysin, luteolin stachyrin, α-tocopherol (vitamin E) belong to flavonoid group of compounds. All families like Compositae, Liliaceae, Euphorbiaceae, Scrophulariaceae, Labiatae etc have flavonoids as their major constituents and that's why having potent potential for protection and treatment of liver diseases correlating with radical scavenging activity by donating hydrogen atom [H+]. Flavonoids also have ability to scavenge the superoxide anion and hydroxyl radicals and terminate chain radical reactions (Kumar et al., 2011).

Conclusion

The purpose of clustering maximum plants having potential for treatment and protection of liver against various hepatotoxic agents is to develop an encyclopedia. Although we know the traditional hepatoprotective and antioxidant plants those are easily available in their crude form but their use in this form is so difficult or some time useless to cure the disease. So, still there is a strong need to develop some effective agents based on plant principles.

References

Achuthan CR, Babu BH, Padikkala J. Antioxidant and hepatoprotective effects of *Rosa damascena*. Pharmaceut. Biol. 2003. 41: 357-61.

Afaf A, Nuha HS, Mohammed AH. Hepatoprotective effect of *Lepidium sativum* against carbon tetrachloride induced damage in rats. Res J Ani Vet Sci. 2008; 3: 20-28.

Ahmad M, Erum S. Hepatoprotective studies on *Haloxylon* salicornicum: A plant from Cholistan desert. Pak J Pharmac Sci. 2011; 24: 377-82.

Ahmad M, Mahmood Q, Gulzar K, Akhtar MS, Saleem M, Qadir MI. Antihyperlipidemic and hepatoprotective activity of *Dodonaea viscosa* leaves extracts in alloxan-induced diabetic rabbits (*Oryctolagus cuniculus*). Pak Vet J. 2011; 32: 50-54

Ahmed B, Alam T, Khan SA. Hepatoprotective activity of *Luffa* echinata fruits. J Ethnopharmacol. 2001; 76: 187-89.

- Ahsan MR, Islam KM, Bulbul IJ. Hepatoprotective activity of methanol extract of some medicinal plants against carbon tetrachloride-induced hepatotoxicity in rats. Eur J Sci Res. 2009; 37: 302-10.
- Alamgeer, Nawaz M, Ahmad T, Mushtaq MN, Batool A. Hepatoprotective activity of *Thymus linearis* against paracetamol and carbon tetrachloride-induced hepatotoxicity in albino mice. Bangladesh J Pharmacol. 2014; 9: 230-34.
- Ali M, Qadir MI, Saleem M, Janbaz KH, Gul H, Hussain L, Ahmad B. Hepatoprotective potential of *Convolvulus arvensis* against paracetamol-induced hepatotoxicity. Bangladesh J Pharmacol. 2013; 8: 300-04.
- Al-Razzuqi R, Al-Jawad F, Al- Hussaini J, Al-Jeboori A. Hepatoprotective effect of *Glycyrrhiza glabra* in carbon tetrachloride-induced model of acute liver injury. J Phys Pharm Adv. 2012; 2: 259-63.
- Anusuya N, Raju K, Manian S. Hepatoprotective and toxicological assessment of an ethnomedicinal plant *Euphorbia fusiformis* Buch.-Ham. J Ethnopharmacol. 2010; 127: 463-67.
- Arsul VA, Wagh SR, MAYEE RV. Hepatoprotective activity of livergen, a polyherbal formulation against carbon tetrachloride induced hepatotoxicity in rats. Int J Pharma Pharmac Sci. 2011; 3: 228-31.
- Avijeet, J, Manish S, Lokesh D, Anurekha J, Rout SP, Gupta VB, Krishna Kl. Antioxidant and hepatoprotective activity of ethanolic and aqueous extract of *Momordica dioica* Roxb. leaves. J Ethnopharmacol. 2008; 115: 61-66.
- Awaad AS, Maitland DJ, Soliman GA. Hepatoprotective activity of *Schouwia thebica* webb. Bioorg Med Chem Lett. 2006; 16: 4624-28.
- Babalola O, Ojo OE, Oloyede, FA. Hepatoprotective activity of aqueous extract of the leaves of *Hyptis suaveolens* on acetaminophen-induced hepatotoxicity in rabbits. Res J Chem Sci. 2011; 1: 85-88.
- Babita MH, Chhaya G, Goldee P. Hepatoprotective activity of *Rubia cordifolia*. Pharmacologyonline. 2007; 3: 73-79.
- Bag AK, Mumtaz SMF. Hepatoprotective and nephroprotective activity of hydroalcoholic extract of *Ipomoea staphylina* leaves. Bangladesh J Pharmacol. 2013; 8: 263-68.
- Balamurugan G, Muthusamy P. Observation of the hepatoprotective and antioxidant activities of *Trianthema decandra* Linn. (*Vallai sharunnai*) roots on carbon tetrachloride-treated rats. Bangladesh J Pharmacol. 2008; 3: 83-89.
- Bhakta T, Banerjee S, Mandal SC, Maity TK, Saha BP, Pal M. Hepatoprotective activity of *Cassia fistula* leaf extract. Phytomed. 2001; 8: 220-24.
- Chand N, Durrani FR, Ahmad S, Khan A. Immunomodulatory and hepatoprotective role of feed-added *Berberis lycium* in broiler chicks. J Sci Food Agric. 2011; 91: 1737-45.
- Chandan BK, Saxena AK, Shukla S. Hepatoprotective potential of *Aloe barbadensis* Mill against carbontetrachloride induced hepatotoxicity. J Ethanopharmacol. 2007; 111: 560-66.
- Dalia C, Nagalakshrni, P. Immunological alterations in murine

- model after inoculation of carbon tetrachloride. Antiseptic. 2000; 97: 297–300.
- Dey P, Saha MR, Sen A. Hepatotoxicity and the present herbal hepatoprotective scenario. Int J Green Pharm. 2013; 7: 265-73
- Dhanaraj TS, Gowthami R, Rajlakshmi S, Murugaiah K. Antihepatotoxicity of *Hygrophila auriculata* on CCl₄ induced hepatotoxicity in rats . Asian J Res Pharm Sci. 2012; 2: 140-42
- Donfack HJ, Kengap RT, Ngameni B, Chuisseu P, Tchana AN, Buonocore D, Ngadjui BT, Moundipa PF, Marzatico F. *Ficus cordata* Thunb (Moraceae) is a potential source of some hepatoprotective and antioxidant compounds. Pharmacologia 2011; 2: 137-45.
- Etim OE, Farombi EO, Usoh IF, Akpan EJ. The protective effect of *Aloe vera* juice on lindane induced hepatotoxicity and genotoxicity. Pak J Pharm Sci. 2006; 19: 333-37.
- Friday UO, Ifeanyi E, Emmanuel AI, Godwin C, Emeka J. Analgesic and hepatoprotective activity of methanoilc leaf extract of *Ocimum gratissimum*. Res J Med Plant. 2012; 6: 108-19
- Gani SM, John SA. Evalution of hepatoprotective effect of *Nigella sativa* L. Int J Pharma Pharmac Sci. 2013; 5: 12-19.
- Garba HS, Sambo N, Bala U. The effect of the aqueous extract of *Kohautia grandiflora* on paracetamol induced liver damage in albino rats. Nigerian J Physiol Sci. 2009; 24: 17–23.
- Gressner OA. Chocolate shake and blueberry pie or why your liver would love it. J Gastroenterol Hepatol Res. 2012; 1: 171-95.
- Gujrati V, Patel N, Rao VN, Nandakumar K, Gouda TS, Shalam MD, Kumar SM. Hepatoprotective activity of alcoholic and aqueous extracts of leaves of *Tylophora indica* (Linn.) in rats. Indian J Pharmacol. 2007; 39: 43-47.
- Gupta AK, Chitme H, Dass SK, Misra N. Antioxidant activity of *Chamomile recutita* capitula methanolic extracts against CCl₄-induced liver injury in rats. J Pharmacol Toxicol. 2006; 1: 101-07.
- Haque R, Subhasish M, Sinha S, Modhurupa GR, Sinha D, Sunita. Hepatoprotective activity of *Clerodendron inerme* against paracetamol-induced hepatic injury in rats for pharmaceutical product. Int J Drug Dev Res. 2011; 3: 23-28.
- Hegde K, Joshi AB. Hepatoprotective and antioxidant effect of *Carissa spinarum* root extract against CCl₄ and paracetamolinduced hepatic damage in rats. Bangladesh J Pharmacol. 2010; 5: 73-76.
- Huang B, Ban X, He J, Zeng H, Zhang P, Wang Y. Hepatoprotective and antioxidant effects of the methanolic extract from *Halenia elliptica*. J Ethnopharmacol. 2010; 131: 276-81.
- Hussain L, Akash MSH, Tahir M, Rehman K, Ahmed KZ. Hepatoprotective effects of methanolic extract of *Alcea rosea* against acetaminophen-induced hepatotoxicity in mice. Bangladesh J Pharmacol. 2014; 9: 322-27.
- Ibrahim M, Khaja MN, Aara A, Khan AA, Habeeb MA, Devi YP, Narasu ML, Habibullah M. Hepatoprotective activity of *Sapindus mukorossi* and *Rheum emodi* extracts: *In* vitro and in vivo studies. World J Gastroenterol. 2008; 14:

2566-71.

- Ilyas N, Sadiq M, Jehangir A. Hepatoprotective effect of garlic (*Allium sativum*) and milk thistle (silymarin) in isoniazid induced hepatotoxicity in rats. Biomedica 2011; 27: 166-70.
- Iwalokun BA, Efedede BU, Alabi-Sofunde JA, Oduala T, Magbagbeola OA, Akinwande AI. Hepatoprotective and antioxidant activities of *Vernonia amygdalina* on acetaminophen-induced hepatic damage in mice. J Med Food. 2006; 9: 524-30.
- Jain A, Soni M, Deb L, Jain A, Rout SP, Gupta VB, Krishna KL. Antioxidant and hepatoprotective activity of ethanolic and aqueous extracts of *Momordica dioica* Roxb. leaves. J Ethnopharmacol. 2008; 115: 61-66.
- Jamshidzadeh A, Fereidooni F, Salehi Z, Niknahad H. Hepatoprotective activity of Gundelia tourenfortii. J Ethnopharmacol. 2005; 101: 233-37.
- Jose JK, Kuttan R. Hepatoprotective activity of Emblica officinalis and Chyavanprash. J Ethnopharmacol. 2000; 72: 129-35.
- Joshi UP, Mishra SH. *In vitro* antioxidant and hepatoprotective activity of isolated compounds from *Pistacia integerrima*. Aus J Medical Herbalism. 2010; 22: 22-34.
- Joshi V, Sutar P, Karigar A, Patil S, Gopalakrishna B, Sureban R. Screening of ethanolic extract of *Stachytarpheta indica* 1. (vahl) leaves for hepatoprotective activity. Int J Res Ayurveda Pharm. 2010; 1: 174-79.
- Kaleem M, Asif M, Ahmed QU, Bano B. Antidiabetic and antioxidant activity of *Annona squamosa* extract in streptozotocin-induced diabetic rats. Singapore Med J. 2006; 47: 670-75.
- Kamat CD, Khandelwal KR, Bodhankar SL, Ambawade SD, Mhetre NA. Hepatoprotective activity of leaves of *Feronia elephantum* Correa (Rutaceae) against carbon tetrachloride-induced liver damage in rats. J Nat Remed. 2003; 3: 148-54.
- Kanchana N, Sadiq AM. Hepatoprotective effect of *Plumbago zeylanica* on paracetamol induced liver toxicity in rats. Int J Pharm Pharmac Sci. 2011; 3: 32-39.
- Khan MA, Khan J, Ullah S, Malik SA, Shafi M. Hepatoprotective effects of *Berberis lycium*, *Galium aparine* and *Pistacia integerrima* in carbon tetrachloride (CCl₄)-treated rats. J Postgrad Med Inst. 2008; 22: 19-25.
- Khan RA, Khan MA, Ahmed M, Sahreen S, Shah NA, Shah MS, Bokhari J, Rashid U, Ahmad B, Jan S. Hepatoprotection with a chloroform extract of *Launaea procumbens* against CCl₄-induced injuries in rats. BMC Comp Alternative Med. 2012; 12: 114-19.
- Kharpate S, Vadnerkar G, Jain D, Jain S. Evaluation of hepatoprotective activity of ethanol extract of *Ptrospermum acerifolium* Ster leaves. Ind J Pharmac Sci. 2007; 69: 850-53.
- Khatri A, Garg A, Agrawal SS. Evaluation of hepatoprotective activity of aerial parts of *Tephrosia purpurea* L. and stem bark of *Tecomella undulata*. J Ethnopharmacol. 2009; 122: 1-5.
- Kiran PM, Raju AV, Rao BG. Investigation of hepatoprotective activity of *Cyathea gigantea* (Wall. ex. Hook.) leaves against paracetamol-induced hepatotoxicity in rats. Asian Pac J

- Trop Biomed. 2012; 2: 352-56.
- Kumar A, Lakshman K, Kumar PA, Viswantha GL, Veerapur VP, Thippeswamy BS, Manoj B. Hepatoprotective activity of methanol extract of *Amaranthus caudatus* Linn. against paracetamol-induced hepatic injury in rats. J Chinese Integrative Med. 2011; 9: 194-200.
- Kumar B, Sandhar H, Prasher S, Tiwari P, Salhan M, Sharma P. A review of phytochemistry and pharmacology of flavonoids. Int Pharmaceut Sciencia. 2011; 1: 25-41.
- Kumar SV, Mishra SH. Hepatoprotective effect of *Baliospermum montanum* (Willd) Muell.- Arg against thioacetamide induced toxicity. Int J Compreh Pharm. 2012; 9: 1-4.
- Lahon K, Das K. Hepatoprotective activity of *Ocimum* sanctum alcoholic leaf extract against paracetamol-induced liver damage in albino rats. Pharmacognosy Res. 2011; 3: 13–18
- Maaz A, Bhatti ASA, Maryam S, Afzal S, Ahmad M, Gilani AN. Hepatoprotective evaluation of *Butea monosperma* against liver damage by paracetamol in rabbits. Special Edit Annals. 2010; 16: 1-5.
- Maheswari C, Maryammal R, Venkatanarayanan R. Hepatoprotective activity of *Orthosiphon stamineus* on liver damage caused by paracetamol in rats. Jor J Bio Sci. 2008; 1: 105-08
- Malar V, Mettilda M. Hepatoprotective activity of *Phyllanthus emblica* against paracetamol induced hepatic damage in Wister albino rats. Afri J Basic Applied Sci. 2009; 1: 21-25.
- Mallhi TH, Abbas K, Ali M, Qadir MI, Saleem M, Khan YH. Hepatoprotective activity of methanolic extract of *Malva parviflora* against paracetamol-induced hepatotoxicity in mice. Bangladesh J Pharmacol. 2014; 9: 342-46.
- Manjunatha BK, Vidya SM. Hepatoprotective activity of *Vitex trifolia* against carbon tetrachloride-induced hepatic damage. Indian J Pharm Sci. 2008; 70: 241–45.
- Matsuda H, Ninomiya K, Morikawa T, Yasuda D, Yamaguchi I, Yoshikawa M. Hepatoprotective amide constituents from the fruit of *Piper chaba*: Structural requirements, mode of action, and new amides. Bio Med Chem. 2009; 17: 7313-23.
- Mohamed AF, Ali Hasan AG, Hamamy MI, Abdel-Sattar E. Antioxidant and hepatoprotective effects of *Eucalyptus maculata*. Med Sci Monit. 2005; 11: 426-31.
- Nadeem M, Dangiya PC, Pasha KV, Imara M, Balani DK, Vohora SB. Hepatoprotective activity of *Solanum nigrum* fruits. Fitoterapia. 1997; 58: 245-54.
- Nafiu MO, Akanji MA, Yakubu MT. Effect of aqueous extract of *Cochlospermum planchonii* Rhizome on some kidney and liver functional indicies of albino rats. Afr J Tradit Complement Altern Med. 2011; 8: 22–26.
- Nayak SS, Jain R, Sahoo AK. Hepatoprotective activity of *Glycosmis pentaphylla* against paracetamol induced hepatotoxicity in Swiss albino mice. Pharm Biol. 2011; 49: 111-17.
- Oh H, Kim DH, Cho JH, Kim YC. Hepatoprotective and free radical scavenging activities of phenolic petrosins and flavonoids isolated from *Equisetum arvense*. J

- Ethnopharmacol. 2004; 95: 421-24.
- Okwuosa CN, Udeani TK, Umeifekwem JE, Conuba E, Anioke IE, Madubueze RE. Hepatoprotective effect of methanolic fruit extracts of *Phoenix dactylifera* (Arecaceae) on thioacetamide induced liver damage in rats. Am J Phytomed Clinl Ther. 2014; 2: 290-300.
- Om FR, Kumar R, Mani T, Niyas MK, Kumar SB, Phaneendra P, Surendra B. Hepatoprotective activity of *Asparagus racemosus* root on liver damage caused by paracetamol in rats. Indian J Novel Drug Delivery. 2011; 3: 112-17.
- Ozbek H, Uğraş S, Dülger H, Bayram I, Tuncer I, Oztürk G, Oztürk A. Hepatoprotective effect of *Foeniculum vulgare* essential oil. Fitoterapia. 2003; 74: 317-19.
- Pari L, Kumar NA. Hepatoprotective activity of *Moringa oleifera* on antitubercular drug-induced liver damage in rats. J Med Food. 2002; 5: 171-77.
- Prabhakaran M, Rangasamy DT. Protective effect of *Hemidesmus indicus* against rifampicin and isoniazid induced hepatotoxicity in rats. Fitoterapia. 2000; 71: 55-59.
- Pramyothin P, Chirdchupunsare H, Rungsipipat A, Chaichantipyuth C. Hepatoprotective activity of *Thunbergia laurifolia* Linn extract in rats treated with ethanol: *In vitro* and *in vivo* studies. J Ethnopharmacol. 2005; 102: 408-11
- Priya V, Niveda S, Pratiksha G, Gayathri R. A review of hepatoprotective natural products. Recent Res Sci Tech. 2010; 2: 49-52.
- Qadir MI, Murad MSA, Ali M, Saleem M, Farooqi AA. Hepatoprotective effect of leaves of aqueous ethanol extract of *Cestrum nocturnum* against paracetamol-induced hepatotoxicity. Bangladesh J Pharmacol. 2014; 9: 167-70.
- Qadir MI, Ali M, Ali M, Saleem M, Hanif M. Hepatoprotective activity of aqueous methanolic extract of *Viola odorata* against paracetamol-induced liver injury in mice. Bangladesh J Pharmacol. 2014; 9: 198-02.
- Qureshi NN, Kuchekar BS, Logade NA, Haleem MA. Antioxidant and hepatoprotective activity of *Cordia macleodii* leaves. Saudi Pharm J. 2009; 17: 299-302.
- Rajendran R, Hemalatha S, Akasakalai K, MadhuKrishna CH, Sohil B, Sundaram M. Hepatoprotective activity of *Mimosa pudica* leaves against carbon tetrachloride induced toxicity. J Nat Prod. 2009; 2: 116-22.
- Raju K, Anbuganapathi G, Gokulakrishnan V, Rajkapoor B, Jayakar B, Manian S. Effect of dried fruits of *Solanum nigrum* LINN against CCl₄-induced hepatic damage in rats. Biol Pharm Bull. 2003; 26: 1618-19.
- Ramadan SI, Shalaby MA, Afifi N, El-Banna HA. Hepatoprotective and antioxidant effects of *Silybum marianum* plant in rats. Int J Agro Veter Med Sci. 2011; 5: 541 -47.
- Rani M, Emmanuel S, Sreekanth MR, Ignacimuthu S. Evaluation of *in vivo* antioxidant and hepatoprotective activity of *Cassia occidentalis* Linn. against paracetamolinduced liver toxicity in rats. Int J Pharm Pharmac Sci. 2010; 2: 67-70.

- Rao BG, Raju NJ. Investigation of hepatoprotective activity of Spondias pinnata. Int J Pharma Sci Res. 2010; 1: 193-98.
- Ravi V, Patel SS, Verma NK, Dutta D, Saleem TS. Hepatoprotective activity of *Bombax ceiba* Linn against isoniazid and rifampicin-induced toxicity in experimental rats. Int J Applied Res Nat Prod. 2010; 3: 19-26.
- Ravikumar V, Shivashangari KS, Devaki T. Hepatoprotective activity of *Tridax procumbens* against d-galactosamine/lipopolysaccharide-induced hepatitis in rats. J Ethnopharmacol. 2005; 101: 55-60.
- Rawat AK, Mehrotra S, Tripathi SC, Shome U. Hepatoprotective activity of *Boerhaavia diffusa* L. roots- A popular Indian ethnomedicine. J Ethnopharmacol. 1997; 56: 61-66.
- Rehman JU, Saqib NU, Akhtar N, Jamshaid M, Asif HM, Sultana S, Rehman RU. Hepatoprotective activity of aqueous-methanolic extract of Suaeda fruticosa in paracetamol-induced hepatotoxicity in rabbits. Bangladesh J Pharmacol. 2013; 8: 378-81.
- Saboo SS, Tapadiya G, Farooqui IA, Khadabadi SS. Free radical scavenging, in vivo antioxidant and hepatoprotective activity of folk medicine *Trichodesma sedgwickianum*. Bangladesh J Pharmacol. 2013; 8: 58-64.
- Sahreen S, Muhammad RK, Rahmat AK. Hepatoprotective effects of methanol extract of *Carissa opaca* leaves on CCl₄-induced damage in rat. BMC Complem Altern Med. 2011; 11: 48-56.
- Sadeque MZ, Begum ZA. Protective effect of dried fruits of Carica papaya on hepatotoxicity in rat. Bangladesh J Pharmacol. 2010; 5: 48-50.
- Saleem M, Ahmed B, Qadir MI, Rafiq M, Ahmad M, Ahmad B. Hepatoprotective effect of *Chenopodium murale* in mice. Bangladesh J Pharmacol. 2014; 9: 124-28.
- Saleem M, Ahmed B, Karim M, Ahmed S, Ahmad M, Qadir MI, Syed NIH. Hepatoprotective effect of aqeous methanolic extract of *Rumex dentatus* in paracetamol induced hepatotoxicity in mice. Bangladesh J Pharmacol. 2014; 9: 284-89.
- Saleem M, Chetty M, Ramkanth S, Rajan V, Kumar MK, Gauthaman K. Hepatoprotective herbs: A review. Int. J. Res. Pharm. Sci. 2010; 1: 1-5.
- Selvam, NT, Yathi K, Kumar S, Saraswathy V, Venugopalan T, Jaya N. Hepatoprotective activity of methanolic extract of *Cinnamomum tamala* (Nees) against paracetamol intoxicated Swiss albino mice. Int J Pharma World Res. 2010; 2: 2-7.
- Setty SR, Quereshi AA, Swamy V, Patil T, Prakash T, Prabhu K, Gouda V. Hepatoprotective activity of *Calotropis procera* flowers against paracetamol-induced hepatic injury in rats. Fitoterapia. 2007; 78: 451–54.
- Shah VN, Deval K. Hepatoprotective activity of leaves of *Parkinsonia aculeata* Linn against paracetamol induced hepatotoxicity in rats. Int J Pharma. 2011; 1: 59-63.
- Sharma SK, Suman N, Vasudeva N. Hepatoprotective activity of *Vitis vinifera* root extract against carbon tetrachloride-induced liver damage in rats. Acta Pol Pharm. 2012; 69: 933-37.

- Singh B, Saxena AK, Chandan BK, Anand KK, Suri OP, Suri KA, Satti NH. Hepatoprotective activity of verbenalin on experimental liver damage in rodents. Fitoterapia 1998; 58: 135-40.
- Singh D, Gupta RS. Hepatoprotective activity of methanol extract of *Tecomella undulata* against alcohol and paracetamol induced hepatotoxicity in rats. Life Sci Med Res. 2011; 26: 1-6.
- Singh D, Mehta S. Hepatoprotective activity of *Sarcostemma brevistigma* against carbon tetrachloride-induced hepatic damage in rats. Curr Sci. 2003; 84; 22-27.
- Singh S, Mehta A, Mehta P. Hepatoprotective activity of *Cajanus cajan* against carbon tetrachloride induced liver damage. Int J Pharm Pharmac Sci. 2011; 3: 1-7.
- Srirama R, Deepak HB, Senthilkumar U, Ravikanth G, Gurumurthy BR, Shivanna MB, Chandrasekaran CV, Agarwal A, Shaanker RU. Hepatoprotective activity of Indian *Phyllanthus*. Pharm Biol. 2012; 50: 948-53.
- Srivastava A, Shivanandappa T. Hepatoprotective effect of the aqueous extract of the roots of *Decalepis hamiltonii* against ethanol-induced oxidative stress in rats. Hepatology Res. 2006; 35: 267–75.
- Sunilson J, Muthappan M, Das A, Suraj R, Varatharajan R, Promwichit P. Hepatoprotective activity of *Coccinia grandis* leaves against carbon tetrachloride induced hepatic injury in rats. Int J Pharmacol. 2009; 5: 222-27.
- Sumitha P, Thirunalasundari T. Hepatoprotective activity of *Aegle marmelos* in CCl₄ induced toxicity: An *in vivo* study. J Phyto. 2011; 3: 5-9.
- Tabassum N, Agrawal S. Hepatoprotective activity of *Eclipta alba* hassk. against paracetamol induced hepatocellular damage in mice. Experimental Med. 2004; 11: 278-80.
- Tabassum N, Chattervedi S, Aggrawal SS, Ahmed N. Hepatoprotective studies on paracetamol induced liver cell damage in Albino mice. JK-Practitioner. 2005; 12: 211-12.
- Tasduq SA, Singh K, Satti NK, Gupta DK, Suri KA, Johri RK. *Terminalia chebula* (fruit) prevents liver toxicity caused by sub-chronic administration of rifampicin, isoniazid and pyrazinamide in combination. Hum Exp Toxicol. 2006; 25: 111-18
- Thakare SP, Jain HN, Patil SD, Upadhyay UM. Hepatoprotective effect of *Cocculus hirsutus* on bile duct ligation-induced liver fibrosis in Albino Wistar rats. Bangladesh J Pharmacol. 2009: 4: 126-30
- Tortora GJ, Grabowski SR. The digestive system (liver and gallbladder): Principles of anatomy and physiology. New York, Harper Collins College Publishers, 2002, pp 792-95.
- Tsai JC, Peng WH, Chiu TH, Huang SC, Huang TH, Lai SC, Lai ZR, Lee CY. Hepatoprotective effect of *Scoparia dulcis* on carbon tetrachloride induced acute liver injury in mice. Am J Chin Med. 2010; 38: 761-75.

- Turel I, Özbek H, Erten R, Oner OC, Cengiz N, Yilmaz O. Hepatoprotective and anti-inflammatory activities of *Plantago major* L. J Pharmacol. 2009; 41: 120–24.
- Valan MF, Brittob AJ, Venkataramanc R A brief review: Phytoconstituents with hepatoprotective activity. Int J Chem Sci 2010; 8: 1421-32.
- Verma N, Khosa RL. Hepatoprotective activity of leaves of *Zanthoxylum armatum* DC in CCl₄ induced hepatotoxicity in rats. Indian J Biochem Biophys. 2010; 47: 124-27.
- Vertichelvan T, Jegadeesan M, Senthil Palaniappan S. Diuretic and anti-inflammatory activities of *Aerva lanata* in rats. Indian J Pharm Sci. 2000; 62: 300-02.
- Vonk RJ, Scholtens E, Keulemans GT, Meijer DK. Choleresis and hepatic transport mechanisms. IV. Influence of bile salt choleresis on the hepatic transport of the organic cations, Dtubocurarine and N4-acetyl procainamide ethobromide. Naunyn Schmiedebergs Arch Pharmacol. 1978; 302: 1-9.
- Wang L, Cheng D, Wang H, Di L, Zhou X, Xu T, Yang X, Liu Y. The hepatoprotective and antifibrotic effects of *Saururus chinensis* against carbon tetrachloride induced hepatic fibrosis in rats. 2009; 126: 487-91.
- Wang N, Li P, Wang Y, Peng W, Wu Z, Tan S, Liang S, Shen X, Su W. Hepatoprotective effect of *Hypericum japonicum* extract and its fractions. J Ethnopharmacol. 2008; 116: 1-6.
- Ward FM, Daly MJ. Hepatic disease. In: Clinical pharmacy and therapeutics (Walker R, Edwards C. (eds.). New York, Churchill Livingstone, 1999, pp 195-212.
- Wu Y, Yang L, Wang F, Wu X, Zhou C, Shi S, Mo J, Zhao Y. Hepatoprotective and antioxidative effects of total phenolics from *Laggera pterodonta* on chemical-induced injury in primary cultured neonatal rat hepatocytes. Food Chem Toxicol. 2007; 45: 1349-55.
- Yasmin S, Kashmiri AM, Anwar K. Screening of aerial parts of Abutilon bidentatum for hepatoprotective activity in rabbits. J Med Plants Res. 2011; 5: 349-53.
- Yen FL, Wu TH, Lin LT, Lin CC. Hepatoprotective and antioxidant effects of *Cuscuta chinensis* against acetaminopheninduced hepatotoxicity in rats. J Ethnopharmacol. 2007; 111: 123-28.
- Yen MH, Weng TC, Liu SY, Chai CY, Lin CC. The hepatoprotective effect of *Bupleurum kaoi*, an endemic plant to Taiwan, against dimethylnitrosamine-induced hepatic fibrosis in rats. Biol Pharm Bull. 2005; 28: 442-48.
- Zeashan HA, Amresh GA, Satyawan SB, Venkateswara C. Hepatoprotective activity of *Amaranthus spinosus* in experimental animals. Food and Chem Toxicol. 2008; 46: 3417-21.
- Zhou D, Ruan J, Cai Y, Xiong Z, Fu W, Wei A. Antioxidant and hepatoprotective activity of ethanol extract of *Arachniodes exilis* (Hance) Ching. J Ethnopharmacol. 2010; 27: 232-37.